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Previous experiments on a small-scale rectangular water-channel with slotted 
walls revealed that under certain circumstances the flow could become unsteady. 
Although these oscillations were suppressed at the time, the mechanism of the 
instability was not fully understood. Theoretical work, on a similar form of in- 
stability in a circular slotted-wall wind tunnel, has been extended to describe the 
oscillations in the water channel. Further experiments have been performed, 
and in some of these the length of the outer chamber surrounding the working 
section was altered. Good agreement between the theoretical and experimental 
results was obtained. Consideration has also been given to the occurrence of the 
self-induced oscillations in flumes of different scale and form. 

1. Introduction 
Experimental work by Betts & Binnie (1966) and Binnie & Cloughley (1970) 

has demonstrated that larger models can be satisfactorily accommodated 
in an open water-channel if the walls and bottom of the channel contains longi- 
tudinal slots which connect the working section to a large open reservoir surround- 
ing the channel and containing effectively stationary water. In the earlier work, 
a form of self-induced oscillation was reported. This consisted of a longitudinal 
standing wave oscillation (first ‘sloshing’ mode) in the outer chamber, with the 
surface variations in phase across the outer chamber and the slotted working sec- 
tion; the amplitude of the standing wave was slightly larger in the working sec- 
tion than a t  the same longitudinal position in the outer chamber. Although the 
instability was eliminated a t  the time, it appeared worthwhile to investigate this 
further to gain a better understanding of the mechanism involved and to deter- 
mine the likelihood of its occurrence in a larger scaIe channel. 

The experiments described in this paper were performed in the same small 
channel as before. This had a 146 in. wide slotted-wall working section, just under 
6ft long, followed by a solid wall section about 2ft long. In  addition, a false end 
wall was constructed which, when fitted a t  the downstream end, reduced the 
length of the outer chamber from 8 f t  to just over 6 ft. Comparisons were made 
with an extension of the theory for similar oscillations in a slotted-wall wind 
tunnel; the results seem to  be sufficiently in agreement for forecasts to be made 
of the regions in which such oscillations are liable to occur in channels of different 
design and scale. 
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FIGURE 1. Self-induced oscillations with air flow across a rectangular cavity. 

2. Theoretical considerations of the mechanism of instability 
2.1. General considerations 

The way in which a basic hydrodynamic instability can develop into a finite 
amplitude oscillation, with little harmonic content, when a feed-back mechanism 
is present has been well described in a general report by Naudascher (1967). The 
most relevant case of this kind of flow-induced excitation is illustrated in figure 1, 
where a uniform air flow passes over a rectangular cavity ABCD in the side wall 
(cf. Rossiter 1966; East 1966). At the upstream end A,  perturbations will 
develop over a wide range of frequencies, owing to the hydrodynamic instability 
of the shear layer between the main flow and the almost stationary fluid in the 
cavity. These perturbations will amplify and be convected downstream, a t  the 
rates appropriate to their wavelengths, until they reach the downstream end D, 
where they experience a constraint; a force is therefore exerted on the fluid and 
induces additional velocity and pressure disturbances. These pressure distur- 
bances, which are transmitted at  sonic speed throughout the flow field, have the 
greatest effect at  the sensitive upstream end A and produce new perturbations 
there. Some of these new perturbations will be in phase with the original perturba- 
tion pattern; the subsequent perturbations at  these frequencies will therefore be 
more intense and lead to stronger disturbances at  D. The perturbations will thus 
continue to grow, becoming more and more periodic and intense, until a state 
of equilibrium is reached between amplification and dissipation and an almost 
steady-state oscillation of the flow is obtained. The large amplitude oscillations 
thus occur in a narrow frequency band and not randomly as in turbulence. 

For the cavity system under consideration, Rossiter found that, provided the 
shear layer did not reattach to the rear wall BC,  a phase shift of about 4 cycles 
along the mouth of the cavity provided optimum feed-back when the main- 
stream velocity was at  sufficiently low Mach number for the sonic speed of the 
pressure disturbances to be much larger than the convection velocity of the shear- 
layer perturbations. Moreover, the feed-back mechanism may involve a resonance 
of some form, for instance, an organ-pipe resonance of the open-ended cavity (as in 
East’s experiments) or a mechanical resonance of the backing plate BC. The feed- 
back will then be dominated by this, and the self-induced oscillations will appear 
only at frequencies close to the natural frequency of resonance or its harmonics, 
if they exist. Thus, 1 l . A ~  N - 1  (1) 
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and f = c,/h - fn, ( 2 )  

where 1 is the length of the cavity A D ,  h the wavelength of the shear-layer dis- 
turbance, f the frequency and c, the mean convection or phase velocity. N is a 
positive integer andf, a natural frequency of the resonator. Thus, since the ratio 
ofc, to the mainstream velocity U depends on the wavelength of the perturbation, 
the large self-induced oscillations will occur a t  certain specific velocities which 
could be calculated if the dependence of c,/ U or h were known. 

King, Boyle & Ogle (1958) observed self-induced oscillations caused by reson- 
ant feed-back in a circular slotted-wall subsonic wind tunnel and successfully 
calculated the convection velocity from the theory of hydrodynamic stability. 
They also confirmed that the oscillating pressure was in phase through- 
out the outer chamber and that the phase change of the convected perturbation 
along the length of the working section was $ cycles?. The resonance could 
have been mechanical, but it is more likely that the passages into the 
working section, provided by the slots, allowed the outer chamber to act as a 
Helmholtz resonator. 

2.2. The theory for a circular slotted-wall wind tunnel 

King et al. assumed that the effects of the slats and gaps in the slotted wall 
could be averaged round the circumference, a common assumption in the theory 
of slotted-wall wind tunnels originated by Baldwin, Turner & Knechtel (1954). 
Furthermore, they were able to neglect the effects of the thickness of the shear 
layer between the mainstream and the outer chamber, since its growth was 
restricted by the slats and its dimensions were always small compared with the 
wavelength of the disturbance. Thus, the problem became the familiar one of the 
instability of a circular jet of incompressible fluid, of radius R,, moving with 
velocity U through a body of the same fluid at  rest and bounded by a solid bound- 
ary atradius R, (R, > R,) (Rayleigh 1879). Only axisymmetric disturbances were 
considered, since only these could operate the feed-back mechanism. The aver- 
age effect of the slats was to impose a pressure difference across the disturbed 
boundary of the jet, but King et al. found that this had a negligible effect on the 
convection velocity in their slotted-wall tunnel; this was to be expected as the 
20 yo open-area ratio of the tunnel had been chosen to give the same model 
blockage interference as an ideal open jet (Vandrey & Wieghardt 1955). 

Following King et al. consider the common surface of the mainstream and 
the surrounding fluid to be at radius 

r = R,+r, 

where is small and a function of downstream distance x and time t. The velocity 
potential takes the form - 

- Uz+ $ inside the jet, 

outside the jet, 
(3) 

Care must be taken to distinguish between the gross disturbance, which was in phase 
throughout the outer chamber (and the working section), and the smaller progressive wave, 
in the shear layers between the slats, which activated it. 
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where y5 and q5’ are the small disturbance potentials associated with 7 which must 
individually satisfy Laplace’s equation. The disturbance considered is a pro- 
gressive wave moving downstream of the form 

7 = 7, exp [i (wt  - k z ) ] ,  

and so the required solutions of Laplace’s equation are 

1 y5 = [CIo(kr) + C’Ko(kr)] exp [i(wt - kz ) ] ,  

4’ = [DIo(kr) + D‘Ko(lcr)] exp [i(wt - kz ) l .  

These are complex expressions from which the imaginary parts will be rejected 
later, and I, and K O  are modified Bessel functions of order zero defined by Wat- 
son (1944). 

There are five boundary conditions to be satisfied; zero radial velocity at 
r = 0 (i.e. C‘ = 0) and at r = R,, and two kinematic conditions and a continuity 
of pressure condition on the common surface r = R, (since 7 < Rl) .  After elimi- 
nation of the remaining constants C, D’ and D, the resulting equation to be 
satisfied is 

( X -  1)2+aX2 = 0, (6) 

where x = w / k U  

The quantity a is a function of kR, and R,/R, only, and as R,IR1 tends t o  infinity 
the term within the square brackets tends to unity (i.e. D -+ 0). 

The solution of (6) is complex ( X  = Xl + i X 2 ) ,  except when k = 0. Thus for 
any particular value of R,/R, and a chosen value of kl ( =  27~/h), there is an in- 
finite number of possible values of k = k,  + ik,, to each of which corresponds a 
value of w = w1 + iw,, and 7 contains a real exponential factor exp ( - w,t + k,x). 
The disturbance therefore grows with time if w2 < 0 and with distance downstream 
if& > 0, and the ratio of convection velocity to mainstream velocity is 

fA /U = Wl/k ,U.  

In  the past (Lin 1955) it was assumed that the convection velocity was unaffected 
by the form of the growth (i.e. k , = 0,  purely temporal growth; or w2 = 0,  purely 
spatial growth). However, it is now known that this is generally not so, and for 
axisymmetric disturbances, Umiastowski ( 1969) has shown that the convection 
velocity for spatial growth is greater than that for temporal growth, except 
when k,  R, is zero.? Consideration of the initial stages of the growth of the self- 
induced oscillation discussed in § 2.1 suggests that, if the feed-back mechanism is 
efficient, the value of k, will be small in comparison with - w, (or more particu- 
larly k,lk, < -w,/wl). Thus in the present case we would expect a convection 
velocity only marginally above that corresponding to temporal growth, and 

I consequently f h - I = X  w -- 

U - k U  ‘ - I + a ’  ( 7 )  

Confirmation o f  this is available from the recent independent work of  Crow & Cham- 
pagnt, (1971). 
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FIGURE 2. Configurations for self-induced oscillations in a slotted-wall flume; (a ) ,  (6) short 
outer chamber; (c), ( d )  long outer chamber. The broken lines in (a)  and (c )  indicate the 
region occupied by the longitudinal slats ; the mean of the water surface level sketched in 
these figures lies slightly above the top slat. 

King et al. considered only the case of temporal growth but retained a term in 
their equations to  account for the possible pressure difference across the slats. 
They showed that, for a growing disturbance, the effect of this term would be to 
reduce the convection velocitv, but that. for their experimental conditions, this 
effect was negligible. The above analysis has been based on linearized inviscid 
theory. Lin (1955,s 8.3) has shown that inviscid theory is the proper limiting con- 
dition as viscous effects tend to zero, provided that the disturbance is amplifying; 
moreover, there is experimental and theoretical evidence (Rosenhead 1931 ; 
Sat0 1956,1959) that the phase velocity (but not the growth rate) will be correctly 
predicted by linearized theory up to quite large amplitudes, even in the absence 
of the tuning effect described in § 2.1. However, the use of the theory described 
in this section must finally rest on the experimental results of King et al. 

2.3. Extension of the theory to the slotted-wall rectangular Jlume 

I n  the slotted-wall tunnel, described above, the pressure was in phase through- 
out the outer chamber. However, in the slotted-wall flume, the gross oscillation 
observed by Betts & Binnie (1966) was a standing wave along the outer chamber. 
The length of the standing wave was approximately twice the length of the outer 
chamber, and the surface level had a single central node. Thus thepressure 
in the upstream half of the chamber was 7~ out of phase with that in the down- 
stream half, and for a flume with the same configuration as the tunnel (figures 2 (a )  
and (b)), one would now expect 

l/h 21 N - 2, 
where h is again the wavelength of the convected shear-layer disturbance. 
The finite amplitude of the standing waves would not alter the natural frequency 
significantly, for the amplitudes and ratios of length to depth observed, but 
the work of Fultz (1962) suggests that a soft or damped resonance would be 
expected (i.e. amplitude not drastically reduced when slightly off resonance). 
For the situation shown in figure 2 (a) ,  a fictional wave maker, oscillating a t  the 
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natural frequency and situated a t  the downstream end, would be passing through 
its centre position moving outwards a t  the moment when the elevation of the 
standing wave was a maximum a t  the upstream end. The phase of this imaginary 
wave maker must be fixed relative to the phase of the shear-layer disturbance a t  
the downstream end of the slotted section. However, for the situation illustrated 
in figure 2 (a), where the outer chamber extends significantly beyond the end of the 
slotted section, the equivalent fictional wave maker in figure 2 ( c )  is no longer 
near the end wall, although it is still situated in the downstream half of the outer 
chamber. It would therefore be a t  its maximum inward inclination when the sur- 
face elevation of the standing wave was a maximum a t  the upstream end and 
consequently retarded by @relative to a wave maker situated a t  the downstream 
end wall (cf. figure 2 ( a ) ) t .  One is therefore led to expect that for the experimental 
conditions of figure 2 (d )  the wavelength of the convected shear-layer disturbance 
is given by 

l/h N Av-4. (9) 

An attempt must now be made to calculate the phase velocities of the shear- 
layer disturbances in the rectangular flume. Since there is no analytic theory 
available even for a rectangular tunnel, a heuristic approach must be adopted. 
An initial consideration of the experimental evidence from the slotted flume 
shows that, for any reasonable estimate of the phase velocity, the length of the 
shear-layer disturbance must be more than the width of the working section. 
Consequently, as in the work of King et al. the size and shape of the cross-section 
of the main flow will be significantly more important than the thickness of the 
shear layer or the spacing of the slats (provided that the open-area ratio is suf- 
ficiently large). However, for values of kR, which are not too large (order unity or 
less), the streamwise perturbation velocity - aq5/az in the circular slotted tunnel 
can be shown to be almost uniform across the working section. Thus, with the 
value of the constant C inserted in equation (5), 

t The situation considered here, with the frequency and wavelength of the standing 
wave remaining in effect fixed while the wave maker is moved, is directly comparable with 
that described by Taylor (1953), where the position of the wave makers was fixed but the 
frequency, and consequently the wavelength, of the standing wave was varied. The phase 
of a wave maker then changed by fully ?r radians relative to the surface oscillation as the 
frequency changed from below to above the resonant frequency. It can readily be con- 
firmed experimentally that, for the large ratios of wavelength to depth being considered 
here, the relative phase of a wave maker advances smoothly through &r radians at resonance 
as the frequency is increased. 
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since kr d kR,. Consequently, 

40 7 

which is independent of radial position across the tunnel. Hence under these 
conditions, where the perturbation flow is effectively one-dimensional, one would 
expect the instability characteristics not to depend critically on the shape of the 
tunnel but to depend only on a single linear dimension which describes its size. 

For a rectangular flume, the gravitational effect complicates the situation. 
However, a one-dimensional analysis can still be made of the fluctuations in the 
mainstream. Consider a rectangular channel of mean depth d, mean width b 
and mean velocity of water 7. Following the method of 5 2.2, we define a velocity 
potential such that 

CD = $, exp [ i (wt  - kx)]  - 72, 

where #, is effectively independent of position across the stream but, as before, 
may be complex. Consequently, the local streamwise velocity V a t  any cross- 
section is given by 

Continuity considerations across adjacent cross-sections lead to 

P = - = ik$, exp [i(wt - kz ) ]  + 7. (11) 

where A is the local cross-sectional area, or 

av aA aA 
A--+V-+- = 0,  

az ax  at 

when second-order terms are neglected. A must take the form 

A = A,  exp [i(wt - k z ) ]  + 2, 

where 2 is the mean cross-sectional area bd. Hence, combining (1 1)  and (12) and 
neglecting second-order terms leads to the requirement 

Ak$, - iA,( v - w / k )  = 0. 

Let the variations in cross-sectional area be caused by displacements 7 of the 
common surfaces between the mainstream and the surrounding fluid given by 

7 = qoexp [i(wt - kz ) ] ,  

and vertical displacements Sh of the free surface such that 

Sh = (Sh),exp [ i ( o t - k z ) ] ,  

with 6h measured positive upwards and 7 positive outwards. Then, 
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Now, Bernoulli’s equation for unsteady flow gives 

a@/at - g 6h - + V 2  = constant 

for the conditions considered. Thus, equating the fluctuating parts of the left- 
hand side to zero and neglecting second-order terms leads to 

(&I&), = - (ik@,/g) ( V  - w / k ) .  (14) 

When this is combined with (13 ) ,  we obtain 

i (2d  + b )  (v - w / k )  qo 
@’ = k[A - b(V-  w/k)2/g] 

and the following for the fluctuating component of the mainstream velocity: 

- ( 2 d + b ) ( V - w / k )  
ikg5, exp [i(wt - kz ) ]  = roexp [i(wt-kkx)]. (15) 

bd [ 1 - ( V - ~ / l c ) ~ / g d ]  

A comparison of ( 1 0 )  and (15) suggests that, within the range of wavenumbers 
where the perturbations are effectively one-dimensional, the convection velocities 
in the slotted flume may be calculated from the theory for a slotted circular tunnel 
of ‘ equivalent radius ’ 

R 1 -  --- 2 ; ~ b [ 1 - ; ( l - g ) 2 ] .  

In  temporal growth theory, the right-hand side of (16) contains an imaginary term 
due to the presence of the complex frequency w = w1 + iw2; this would lead to 
the impossible situation of a complex ‘equivalent radius ’. However, within the 
range of wavenumbers of interest, the second term within the square brackets is 
always negligibly small cornparedwith unity. Moreover, calculations based on the 
theoretical values of w1 and w2 for the ideal circular jet show that when the 
imaginary part starts to be significant it is of the same order as the real part of 
the second term, which is of order ( v 2 / g d )  ( 1  - W ~ / ~ T ) ~ .  Thus, 

Rl = 2bd/(2cl+ b) (17 )  

provided that (r - w1/k)2/gd < 1.  
Elimination of @, from ( 1 4 )  shows that 

(2d + b )  ( 7 - u/k)2/gd (Sh,) = - 
b [ 1 - ( V - w/k)Z/gd] 

Thus, when (17 )  is valid, (ah), < qo and changes in the surface level caused 
directly by the progressive wave in the shear layer are negligible. The flume 
is therefore equivalent to half of a rectangular slotted tunnel of width b and 
depth ad. Equation ( 1 7 )  can easily be recognized as the definition of ‘hydraulic 
mean radius’, a concept which has been found useful in correlating friction 
factors in pipes of non-circular cross-section. 

The fluctuating velocity - ag5’/az in the outer chamber decreases rapidly with 
distance outwards and cannot be considered one-dimensional. Fortunately the 
size of the outer chamber in the experiments was always sufficiently large for 
the effects of the outer walls to be small, so the choice of the correct value for the 
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‘equivalent radius’ R, of the outer chamber is not critical. It is therefore reason- 
able to assume, by comparison with (17)) that 

R, = 2BD/(2D+B), (18) 

where B and D are the width and depth of the outer chamber respectively. 
Extreme accuracy cannot be expected from the calculations of convection 

velocities in the slotted flume based on this heuristic approach of an equivalent 
circular tunnel. However, if the results are found to be within say I0 yo of the 
correct value, the theory will have served its purpose and a considerable im- 
provement will have been gained over the only alternative, namely guessing 
the convection velocity. 

3. Description of apparatus and instruments 
The apparatus was the same as that described by Betts & Binnie (1966). Water 

was supplied to  the upstream end of a long open stilling section, from which it 
passed through a contraction to the slotted rectangular working section, along 
a short solid walled exit section and over a weir to the sump. The 14hin. wide 
working section was surrounded by a rectangular outer chamber 36in. wide, 
the bottom of which was 10.77 in. below the bottom of the working section. The 
slotted section was 5ft 1Oiin. long and started 1-70in. after the upstream end 
of the outer chamber. The basic outer chamber was 8ft  long; however, a solid 
false end plate was fitted a t  the downstream end for some experiments and the 
length of the outer chamber was then Sft l t i n .  For all the experiments on self- 
induced oscillations the gaps between the slats were 0.4 in. (i.e. the nominal open- 
area ratio was +). 

The amplitude and mean level of the free surface were measured with a point 
gauge on the centre-line of the apparatus and 2.50 in. downstream from the start 
of the slotted section. The stream velocities were measured with a miniflowmeter, 
but instead of counting pulses on a Dekatron chain, the speed of rotation of the 
miniflowmeter was read directly on a milliammeter by means of an electronic 
circuit similar to that described by Edington & Molyneux (1960). For con- 
venience of mounting, the miniflowmeter was positioned 4.90 in. downstream from 
the pointer with the head at half the depth of the water in the working section. 
I n  the previous experiments the velocities had been measured with a total-head 
Pitot tube, positioned slightly closer to the start of the slotted section. The 
miniflowmeter was therefore occasionally moved upstream to the position pre- 
viously occupied by the Pitot tube, and although the measured velocities were 
then in general marginally higher, the differences were always well within experi- 
mental error. Before use, the miniflowmeter and its associated circuitry were cali- 
brated in the small circular calibration tank a t  H.R.S. Wallingford. Thereafter, 
confirmation was obtained by means of a hand-held transparent total-head tube 
and by observation of the onset of surface-tension ripples. All experimental read- 
ings were taken within three weeks of the initial calibration. 
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FIGURE 3. Variation of frequencyf and amplitude a of oscillations with stream velocity r, 
Long outer chamber: (a) d = 5-03 in., ( b )  d = 7-63 in., (G) d = 10.01 in. Short outer 
chamber: (d )  d = 5.02 in., ( e )  d = 7.61 in., (f) d = 10.01 in. Frequency: __ , +, velo- 
cities measured with miniflowmeter; 0, velocities measured with Pitot tube. Amplitude : 
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-. -, theoretical natural frequency, jo = [ (g/47rL) tanh (7rD/L)]4 of longitudinal standing 
wave; -- .-, equation (20) for mode numbers N in (8) or (9). 
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4. Experimental results and comparisons with theory 
Readings of the frequency and amplitude of the standing waves were taken over 

a range of stream velocities at two working section depths, d = 7-63 and 10.01 in., 
with the long outer chamber (total length L = 8 ft) and a t  three depths, d = 5.02, 
7.61 and 10.01 in., with the short outer chamber (L  = 6ft l$iii.). The results 
are displayed on figures 3 ( b ) - 3 ( f ) ,  where the amplitude a is defined as half the 
height between a crest and a trough and the velocity is taken as the mean of the 
maximum and minimum indications on the milliammeter . The horizontal lines 
on the figures indicate the appropriate natural frequencies of small standing 
waves along the outer chamber. For completeness, the results from the previous 
experiments with a Pitot tube are displayed on figures 3 (a )  and 3 (b) .  For most of 
these earlier experiments half ellipses were inserted a t  the downstream end of the 
slotted section, which shortened it by 2 in. The agreement between the two series 
of experiments, as shown by figure 3 (b) ,  is very good, and the break in the fre- 
quency curve and the hysteresis effect were againobserved; the slight discrepancy 
in the maximum amplitude is probably due to the earlier point gauge being rather 
blunt. The curves shown on figure 3 ( b )  are those appropriate to the present experi- 
ments. 

The essential results from figure 3 are summarized in table 1. It is noticeable 
that the maximum wave amplitudes with the long outer chamber occurred a t  
velocities and frequencies higher than those associated with the natural frequency, 
whereas the reverse was true with the short outer chamber. Moreover, the smaller 
maximum amplitudes with the short chamber also occurred a t  velocities and 
frequencies higher than those associated with the first crossing of the natural 
frequency; the equivalent maxima with the long chamber were too indeterminate 
to measure. Discrepancies of this order are not unusual, as can be seen from the 
papers of East (1966) and Naudascher (1967). 

The experimental results can most conveniently be compared with the theory 
a t  the natural frequencies of longitudinal oscillation, since these are the only 
frequencies known in advance by a designer.? The following approach was there- 

? The natural frequency has been taken as the fundamental frequency of free small 
standing waves in a simple tank, with the same conditions of length and water depth as 
the outer chamber (fo on table 1). Apart from the question of the finite amplitude of the 
standing waves, which has been considered in § 2.3, there are a t  least two possible reasons 
why the maximum amplitude oscillations might not occur exactly at  this natural fre- 
quency. First, the energy available for forcing the oscillation is likely to increase with the 
velocity of the water in the slotted channel; this effect would tend to increase the frequency 
of maximum amplitude oscillations above the natural frequency fo by an indeterminable 
amount which depends on the softness of the resonance. Second, the presence of the main- 
stream bounded by the slotted walls along the length of the tank is likely to alter the true 
natural frequency in an incalculable way. Intuitively one might expect this effect to be less 
with the long chamber, where the mainstream was bounded by a solid wall in the down- 
stream quarter of the outer chamber. Similar effects would have been apparent in the other 
cases of resonant feed-back which have been considered, and they would have been a 
major cause of the discrepancies which have been noted. In the present experiments, 
oscillations, and even maximum amplitude oscillations, were observed with frequencies 
on both sides of the idealized natural frequency f,. It is therefore reasonable to usef,, the 
only frequency known in advance of the experiments, as a basis for comparison. 
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FIGURE 4. Theoretical relationship for instability in a circular slotted tunnel, equation (7) : 
-- , R21R, + 00 ;  - - -, RJR, = 2.87; -.-. , R21R, = 2.48; . . . * . . , R2/R, = 2.33. 

fore adopted. The values of R, and R, were calculated from (17) and (18) and the 
values of f/v obtained from figure 3 (or table 1); since for the equivalent circular 
tunnel (7)  can be reduced to 

(19) 2nfR,/ u = kRl/(  1 + a), 
the value of ICR,, and hence the wavelength h of the convected disturbance in the 
shear layer, can be immediately obtained. The variation of 2nfRl/U with kR, 
is shown on figure 4, for particular values of RJR,, and a brief summary of the 
calculations is given in table 2. Once kR, is known, the order of magnitude of the 
neglected complex term in (16) can be estimated from the value of ( 7 - wl/k)2/gd, 
which is also given in table 2. Since ( 7 - wl/k)2 /gd  never exceeded 0.03, and only 
rarely exceeded 0.02, the use o f  (17) t o  define R, appears to be justified. 

A comparison of the values of h calculated in this way with the values expected 
from (8) and (9) shows immediately that the values of the integer N were 3 and 2 
for the lower and higher velocity branches respectively; presumably the velocity 
was never high enough to activate the basic N = 1 mode. A closer numerical com- 
parison shows that the calculated values of h were always within 8 yo of those 
expected. In fact, the wavelength with the short outer chamber was expected to 
be fractionally shorter than that forecast from (8)) because the short, lagin., 
length of solid section before the downstream end wall of the outer chamber 
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probably slightly retards the phase condition imposed on the convected distur- 
bance a t  the downstream end of the slotted-wall section; this would further im- 
prove the agreement. The expected accuracy of (8) and (9) in a resonant feed-back 
situation is only of order 8 % (Naudascher 1967), and for this reason no attempt 
was made to allow for the known small experimental errors due to the stationary 
waves that exist on the flow at Froude numbers above about Q, regardless of the 
oscillations (Betts & Binnie 1966). Conversely, if (8) and (9) are considered to be 
accurate, the convection velocities calculated in table 2 are within 8 yo or better 
of the true values, which is again the same order as the agreement between 
measured and calculated convection velocities obtained by King et al. 

The above comparison was made in terms of the wavelength of the shear-layer 
disturbance in order to keep the two distinct elements of the theory separate, 
When the velocities for natural frequency oscillations are calculated from the 
expected wavelengths obtained from (8) and (9) the agreement between theory 
and experiment is slightly better, owing to the shape of the curves on figure 4. 
The greatest discrepancy, which occurs for the value of PI which had to be extra- 
polated (figure 3 (d)) ,  is then only 7 yo. If (19) is written as 

f =  P/h(l+a) (20) 

and the wavelength h of the shear-layer disturbance fixed by the mode number 
N in (8) or (9)) a will be constant for a given depth of water in the flume, and f 
should vary linearly with 7. The relationships (20) is plotted on figures 3(a)-(f)  
for mode numbers 2 and 3. It can be seen that the experimental results of fre- 
quency f plotted against stream velocity depart further from these straight 
lines than do the comparable wind-tunnel results of King et al. (their figure 7 ) .  
This is caused by the resonance being less heavily damped in the flume and 
consequently requiring a greater phase shift of the forcing mechanism (change 
in A )  as the frequency of the oscillation is varied from the natural frequency. The 
stronger resonance in the flume is confirmed by the smaller range of frequencies 
encountered in these experiments. However, all the comparisons made between 
theory and experiment are within previously accepted limits, and this justifies the 
use of the heuristic extension to existing theory and indicates that the basic 
mechanism of the instability has been correctly understood. 

5. Self-induced oscillations in slotted flumes of different scale and 
form 

When the present apparatus is treated as a model for a geometrically similar 
flume with all linear scales increased by a factor A, the scaling is best considered 
a t  the natural frequency. Thus, all wavelengths and ‘equivalent radii’ will also 
be increased by the factor A, and the natural frequency will be reduced in the 
ratio l/Aa. Consequently velocities will be scaled as A*, and the stream Froude 
numbers in the model and prototype will be identical. This result can be obtained 
either from the considerations of 8 2 or independently by dimensional analysis, 
if viscous effects are neglected. 

A slotted flume is unlikely to be used at  stream Froude numbers exceeding 
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0.55, even if the stationary waves on the flow can be eliminated (Binnie & 
Cloughley 1970). At the largest depths, which correspond to the probable normal 
working condition of the flume, both N = 2 and N = 3 modes occurred a t  stream 
Froude numbers less than 0.55 and may be expected to occur at full scale unless 
they are suppressed. The analysis of $ 2  makes it possible to consider different 
configurations of flume. For instance, if the length of the slotted section were 
increased to 8 ft in the 8ft long outer chamber, the mode of oscillation would be 
the same as in the short chamber experiments. The wavelength of the shear-layer 
disturbances would be increased but the natural frequency of oscillation reduced, 
and the consequent rise in the stream velocity for natural frequency oscillations 
would only be of order 5 yo. Similarly, increasing the depth of the outer chamber, 
whilst leaving all other dimensions fixed, would increase the natural frequency 
and hence the corresponding stream velocity by a factor slightly less than 0 4 .  
Neither of these modifications is likely to take all oscillations outside the range 
of Froude numbers less than 0.55. 

A full-scale flume is likely to have a nominal open-area ratio of between 9 and 
13 yo, compared with the 163 yo in the present experiments. Although this will 
help to weaken the self-induced oscillations (Betts & Binnie 1966), the greater 
size of the apparatus will have the reverse effect of reducing the dissipation. 
According to King et al. (1958), the reduction in open-area ratio could reduce 
the ratio of convection to mainstream velocity, and hence slightly increase the 
velocities at which oscillations occur. 

6.  Conclusions 
The self-induced oscillations observed earlier have been investigated both 

experimentally and theoretically. Although the theoretical treatment was of 
necessity heuristic and approximate, the experimental results agreed with the 
theoretical expectations remarkably well. The theory thus fulfilled the required 
purpose of making it possible to predict the occurrence of the oscillations in 
flumes of different geometric form and scale. 

The author is grateful to the Hydraulics Research Station, Wallingford, for 
the use of calibration facilities. He would also like to thank Professor Sir William 
Hawthorne and the members of the the staff of the University Engineering 
Department at  Cambridge who enabled him to use their facilities for the experi- 
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